A Variational Approach of Creeping Solitons with Hartman-Grobman Theorem in Complex Ginzburg-Landau Equation
Abstract
Keywords— Dissipative solitons, complex Ginzburg-Landau equation.
Full Text:
PDFReferences
I.S.Aranson and L.Kramer, “The world of the Complex Ginzburg-Landau equation”, vol.74, p.100, Rev.Mod.Phys., 2002.
N.Akhmediev and A.Ankiewics, “Three sources and three components part of the concept of dissipative solitons”, in Dissipative Solitons: From Optics to Biology and Medicine, vol. 751, pp.1-26, Lect.Notes.Phys., Berlin Heidelberg: Springer, 2008.
S.C.Mancas and S.R.Choudhury, “Spatiotemporal structure of pulsating solitons in the Cubic-Quintic Ginzburg-Landau equation: A novel variational formulation”, vol.40, pp.91-105, Chaos, Solitons and Fractals, 2009.
W.Chang, A.Ankiewicz, and N.Akhmediev, “Creeping solitons of the Complex Ginzburg-Landau equation with a low-dimensional dynamical system model”, vol. 362, pp.31-36, Phy.Lett.A, 2007.
J.M.Soto-Crespo, N.Akhmediev, and A.Ankiewicz, “Pulsating, creeping, and erupting solitons in dissipative systems”, vol.85, pp. 2937- 2940, Phys.Rev.Lett., 2000.
H.P.Tian, Z.H.Li, J.P.Tian, G.S.Zhou, and J.Zi, “Effect of nonlinear gradient terms on pulsating, erupting and creeping solitons”, vol. 78, pp. 199-204, Appl.Phys.B, 2000.
W.Chang, A.Ankiewicz, and N.Akhmediev, “Creeping solitons in dissipative system”, pp.7-9, in Australian Conference on Optical Fibre Technology Proceedings [Australian Optical Society], Melbourne, 2006.
N.Akhmediev, J.M.Soto-Crespo, and G.Town, “Pulsating solitons, chaotic solitons, period doubling, and pulse coexistence in mode-locked lasers: CGLE approach”, vol.63, p. 056602, Phy.Rev.E., 2001.
C.S.Mancas, “Dissipative solitons in the Cubic-Quintic Complex Ginzburg-Landau equation: Bifurcation and spatial temporal structure”, Ph.D dissertation, University Central Florida, 2007.
Refbacks
- There are currently no refbacks.